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Abstract 

Indirect photography is a recently demonstrated technique which expands on the 

principles of dual photography and allows for the imaging of hidden objects.  A camera 

and light source are collocated with neither having line-of-sight access to the hidden 

object.  Light from the source, a laser, is reflected off a visible non-specular surface onto 

the hidden object, where it is reflected back to the initial non-specular surface and 

collected by the camera. This process may be repeated numerous times for various laser 

spot positions to yield slightly different camera images due to a variation in the 

illumination of the object.  These images can then be used to construct an “indirect” 

image of the hidden object.  This thesis provides an alternative method of processing the 

camera images by modeling the system as a set of transport and reflectance matrices.  

This approach reduces the required size of the visible scattering surface.  Matrix 

formulation and those parameters shown in simulation to improve indirect image quality 

as measured by a modified MTF, including the method of matrix inversion, and number 

and pattern of laser spots, are discussed. 
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MATRIX DETERMINATION OF REFLECTIVITY  

OF HIDDEN OBJECT VIA INDIRECT PHOTOGRAPHY 

 
1. Introduction 

1.1 Problem Statement 

The United States Air Force and other branches of the United States military 

constantly gather intelligence on unknown areas, both as a means to identify potential 

targets as well as to conduct reconnaissance before entering an area.  While numerous 

methods currently exist to accomplish this, an adversary wishing to prevent friendly 

personnel from acquiring an image of an area merely needs to block the line of sight, 

thereby limiting the amount of intelligence available to the military.  An ability to gather 

images from areas without a direct line of sight would be a great improvement.  This 

paper discusses the possibilities and limits of using indirect photography, particularly in 

using a matrix formulation, as a technique to accomplish this goal. 

1.2 General Issue 

Dual photography is a relatively recent photographic technique which takes 

advantage of Helmholtz reciprocity to allow the positions of camera and illuminating 

light source to be interchanged (Sen et al., 2005).  Dual photography takes advantage of 

this to allow information which is available (or visible) to the light source, but not the 

camera, to be restored and captured by the camera.  While an interesting advance with 
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great application in computer generated graphics, dual photography requires that the light 

source, in this case a pixilated projector, be placed in a position with a clear view of the 

object of which an image is desired.   As a result, dual photography cannot be used to 

obtain imagery which is otherwise unavailable to either the light source or the camera.  

Indirect photography takes this one step further.  As demonstrated by Lieutenant Colonel 

Mark Hoelscher, USAF, using multiple non-specular surfaces, it is possible to co-locate 

the camera and light source (in this case a laser), neither of which has a direct line of 

sight to the object in question, and still obtain recognizable visuals of that object, though 

not as clearly as can be accomplished via dual photography (Hoelscher, 2011).   In 

indirect photography, one point on a surface (hereafter referred to as surface 1) is 

illuminated, causing non-specularly reflected light to be cast upon the object (also 

referred to here as surface 2) and then back to either the initial or some other surface 

(referred to here as surface 3).  This, however, was accomplished by moving the field of 

view (FOV) of the camera and the light source as one unit on surfaces 1/3, which 

required a relatively large surface with an unchanging Bidirectional Reflectance 

Distribution Function (BRDF). 

 

 

Figure 1.  Indirect photography with camera field of view dictated by point of illumination. 
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1.3 Research Focus 

In an effort to increase the practical application of indirect photography, this 

research focuses on the possibility of moving the light source, while keeping the camera 

FOV immobile.  This results in a configuration, shown in Figure 2, where the laser spots 

are located around the camera field of view, thus reducing both the area needed, as well 

as the chances that the reflective properties differ at various locations of surface 1/3. 

In this case, the large center grid again represents the pixilated field of view of the 

camera.  Using this setup, this is constant for all trials and the laser spots, represented by 

the outer ring of smaller squares, are the only thing which changes between different 

trials.   

 

 

Figure 2.  Indirect photography setup with fixed camera field of view. 
 
 
 
 This research also focuses on the matrix formulations of light transport in an 

effort to discover the general form of geometrical relationships between surfaces 1, 2 and 
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3, ideally leading to future work which will then be able to generalize appropriate 

approximations of these matrices for unknown geometries. 

1.4 Investigative Questions 

This research aims to answer several questions.  The highest priority is to 

determine if it is possible to resolve an image of an object indirectly by using matrices as 

a means of representing the radiometric equations which have previously been developed 

(Hoelscher, 2011).  This is more difficult than might be anticipated due to the nature of 

the matrices involved in this process.  Because the dimensions of the matrices correspond 

to the number of laser spots used, the desired resolution of the object and the number of 

pixels in the camera, in most cases these matrices will not be square, making them non-

invertible by simple means. 

As a result, it is also important to determine which method of inverting non-

square matrices should be used.  Some possibilities include using the Moore-Penrose 

pseudoinverse or matrix right divide as defined in Matlab.  If neither of these is effective, 

it will also necessitate more research to determine if other code will need to be written to 

perform the desired function. 

Even after the preferred mathematical method is determined, many variables still 

remain which can affect how accurately an image can be resolved.  These include the 

number of laser spots used to illuminate surface 1, as well as the general location and 

layout of these laser spots.   Since the ideal number, location, and layout of laser spots 

will likely vary as a result of changing distances, angles and desired resolution, the first 

question in this area which needs to be answered is if there is a general trend in these 
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matters.  Another important question is whether there is some sort of indicator which 

could be used to quickly find the ideal setup of laser spots, rather than having to 

repeatedly simulate any given situation to find the best setup. 

All of this research is initially accomplished with a known geometry in order to 

best compare the resulting image with the original.  However, as knowing the exact 

location and geometry of a hidden object is not realistic in most cases, another point of 

emphasis will be to understand the basic form which various matrices take in order to 

apply these to unknown geometries.  This process was also intended to determine the 

importance of knowing an accurate geometry and the degradation of the image which 

occurs when the geometric relationship between surfaces is approximated, rather than 

known.  This would also include an understanding of which values were important to 

know exactly and which can be estimated, as well as the effect when the geometry is 

incorrect or the data from the camera is flawed. 

1.5 Implications 

Research into indirect photography is still in its relative infancy. As a result, most 

practical applications will not be seen for quite some time.  However, once enough 

research is completed, indirect photography will have major implications in a variety of 

fields, particularly to the military professional.  With the current state of mobile 

computing, it is unlikely that this technique could be used regularly for immediate results.  

The delay involved in computing makes this more suitable to larger scale reconnaissance 

without immediate consequences (such as identifying if a particular vehicle is present in a 

covered hanger or not).  Later, as computing power increases, indirect photography could 
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also be used on a personal level, enabling soldiers to see what awaits them around a 

corner.  The techniques researched here could also be applied in similar situations by 

police officers, as well as by firefighters or other rescue workers in order to determine the 

locations of unconscious or otherwise incapacitated individuals. 

1.6 Document Overview 

This document contains a short summary of previous work in the field of indirect 

photography, as well as the principles upon which this work is based.  Also included is a 

discussion of the research performed, both through experiment and simulation, including 

the specific geometries used for these.  The data gathered from the experiment and 

multiple simulations is then analyzed to search for trends which may be used to 

determine the feasibility of using a matrix-based technique to determine the reflectance of 

a hidden object.  This includes determining the effects of changing the number and 

position of these laser spots and surface 1, and the method of matrix inversion, as well as 

a brief discussion of the effect of incorrect measurements.  This information is then used 

to draw conclusions about the feasibility of matrix-based determination techniques in 

indirect photography. 

 

  



7 

2. Literature Review  

2.1 Chapter Overview 

The purpose of this chapter is to give a brief insight into past research in the field 

of indirect photography and other relevant topics.  Because indirect photography is 

relatively new, there has not yet been a great deal of research on this topic.  While a brief 

overview of related research is included here, the dissertation “Restoration of scene 

information reflected from non-specular media” by Lieutenant Colonel Mark Hoelscher 

(Hoelscher, 2011) is recommended for a more in-depth treatment of the historical 

background leading up to indirect imaging. 

Indirect photography is an adaptation of dual photography which relies on 

principles of Helmholtz reciprocity.  As a result, the prior research considered here deals 

first very briefly with Helmholtz reciprocity, then transitions to dual photography, before 

touching briefly on the prior work in indirect photography accomplished by LtCol 

Hoelscher.  In addition, because of the matrix nature of this research, a large amount of 

linear algebra is required, particularly relating to matrix inversion.  For this reason, a 

brief discussion of matrix inversion will be included at the conclusion of this chapter. 

2.2 Relevant Research 

Helmholtz reciprocity states that light (or any electromagnetic radiation) can be 

reversed without changing the physics involved in its transportation.  Initially Helmholtz 

only determined this to be the case for specular (mirrored) surfaces (von Helmholtz & 

Southall, 1862).  However, Raleigh later expanded this to include non-specular media. 

(Rayleigh, 1900).  He showed that given a single surface with an energy source situated 
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at any distance and at any angle from this surface, and a sensor also set at any distance 

and any angle (not necessarily the same distance and/or angle) from this surface, the 

source and the sensor can be interchanged and the sensor will still record the same 

measurement.  This remained the case even if the light underwent reflection, refraction, 

or any other changes in path, so long as the polarization remained unchanged.  This 

ability to mathematically change the locations of source and sensor led to the 

development of a technique referred to as dual photography (Sen et al., 2005). 

2.2.1 Dual Photography 

Dual photography was initially pioneered in 2005 by Sen et al. with the intent of 

aiding in the creation of computer generated graphics.   Though Helmholtz reciprocity 

was well understood previous to this time, these authors were able to apply this principle 

to allow images to be viewed from the locations of pixilated light sources.  For a full 

understanding of dual photography, the reader is recommended Dual Photography by 

Sen et al. (Sen et al., 2005). 

The principles used in developing a transport matrix will receive a fuller treatment 

here, however, as these were applied in the current research as well.  Given a projector 

with pxq pixel elements shining onto some surface and being photographed or otherwise 

viewed by a camera or sensor with mxn pixel elements, each element of the projector is 

lit up individually.  This yields pxq trials, each of which are captured by every one of the 

camera’s mxn pixel elements.  The information collected by the camera from every trial 

is then combined as shown in Figure 3 to yield a matrix with pxq columns and mxn rows 
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representing a mapping of the flux from each of the pxq projector pixels to each of the 

mxn camera pixels.  

 

 

Figure 3.  Creating the transport matrix from data images (Hoelscher, 2011). 
 
 
 

The projected pattern is defined as a row vector with pxq columns and the camera 

images are defined as a column vector with mxn rows.  Thus, the matrix representation is  

  𝑐′ = 𝑇𝑝′  (2.1) 

where c’ is the row vector of the camera images, p’ is the row vector of the projected 

pattern and T is the transport matrix.  The authors in the original paper formed a dual 

image simply by transposing T such that p’’ would be a virtual image formed at the 

projector given the camera projected a pattern c’’.  Note, however, that 𝑇𝑇𝑇 ≠ 1.  In this 

thesis, the inverse of T, 𝑇−1 will be required. 
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2.2.2 Indirect Photography 

Indirect photography was introduced by LtCol Mark Hoelscher in 2011 in an 

effort to be able to gain access to information which is accessible by neither the camera 

nor the light source (Hoelscher, 2011).  Here the idea of using a laser rather than a 

pixilated projector as the source of illumination was first introduced.  These efforts met 

with considerable success, as evidenced in Figure 4.   

 

 

Figure 4.   5 of clubs indirect images at various resolutions (a) 95x63, (b) 47x31, (c) 23x15, 
(d) 11x7, (e) 5x3 and (f) 5x3 dual image (Hoelscher, 2011). 
 



11 

 
This research made the decision to collocate the laser and the camera so that the 

laser spot and the camera FOV would move together on surfaces 1/3.  As it was no longer 

possible to simply determine 𝑇 by observation, this would need to be modeled using 

radiometric principles.  A large amount of the improvement in this process was due to the 

use of a blind deconvolution, which was only possible due to the fixed relationship 

between laser spot and camera FOV and the resulting form of the radiometric equations 

used.  (Hoelscher, 2011). 

In addition, this paper suggested using a matrix formulation as a means of 

revealing symmetries which might exist and aid in the deconvolution process.   While 

this idea is not pursued in depth in his work, a matrix equation is suggested in equation 

(98) of the dissertation “Restoration of scene information reflected from non-specular 

media” (Hoelscher, 2011).  Since a substantially different matrix formulation is applied 

here, the form suggested by LtCol Hoelscher is not included here, and those wishing to 

compare the two are suggested to review his work.  

Additional work with an emphasis on a fixed camera FOV on surfaces 1/3 was 

also completed using data collected by Nathan Powell and analyzed by Lieutenants 

Simon Ferrel and Jessica Shafer (Ferrel, Schafer, & Powell, 2011).  The experimental 

setup included a helium neon laser, two adjustable mirrors, two non-specular reflecting 

surfaces, and a digital camera, arranged as shown in Figure 5.  The laser was designed to 

be incident upon various locations on the surface marked as surface 1, and was controlled 

by changing the angle of the mirrors in the system.  The hidden object was placed face-

down on surface 2, and the camera was situated to take a photograph of surface 3.  
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Though surface 1 and surface 3 were collocated in this case, the location of the incident 

laser spots was kept out of the field of view by approximately 2”. 

 
 

Figure 5.  Prior experimental setup (Ferrel, Schafer, & Powell, 2011). 
 
 
 
The laser light was reflected first off the two mirrors before hitting the first 

surface, then was reflected off of the second surface containing an object hidden from the 

camera.  In an effort to determine the resolving power of indirect photography techniques 

for this setup, the hidden objects which were used were four black and white 

checkerboards of increasing spatial frequency as shown in Figure 6.  

 
 

 
(a)                      (b)                          (c)                       (d) 

 
Figure 6.  Checkerboards used as hidden object. 
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From this hidden object, the light was then reflected once more off of surface 3.  

The camera finally collected the light reflected from surface 3 which was within its field 

of view.  An example of such a photograph is shown in Figure 7. 

 

 

Figure 7.  Example of camera image for experimental setup. 
 
 
 

This process was repeated a total of 252 times, varying the position of the laser 

spot slightly.  61 laser spots were located along the bottom of the FOV, with an additional 

63 on each side, and 65 on the top, all spaced approximately equally along these spaces. 

Each laser spot presented a slightly different illumination of the object, and thus, a 

slightly different image to the camera.  Combining the images from all these trials as 

previously described in Figure 3 yielded the intensity matrix used in this case. 

Unfortunately, no recognizable images could be recovered from the experimental 

data regardless of the spatial frequency of the hidden object or the method used for 

matrix inversion.  One representative example of this is shown in Figure 8 for an attempt 

to resolve a 2x2 checkerboard at 8x8 resolution using the Moore-Penrose pseudoinverse. 
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Figure 8.   Difference between ideal image (left) and recovered image (right) in experimental 
results using the Moore-Penrose pseudoinverse. 
 
 
 

While the matrix inversion resulted in some data being irretrievably lost, the main 

difficulties were a result of backscatter from the incident laser light.  This was a result of 

the very low intensities of the multiply reflected light which actually contains the object 

information.  While the light spots were outside the camera FOV, some light was 

reflected back off surface 1 into the internal workings of the camera.  While this light was 

not directly imaged onto the CCD in the camera, scatter off the lens and internal 

workings of the camera was of equal or greater magnitude than the light containing object 

information and was processed into the images.   

2.2.3 Linear Algebra 

Given an mxn matrix A, with 𝑚 ≠ 𝑛, there is no generalized inverse 𝐴−1 such that 

𝐴𝐴−1 = 𝐼𝑚 and 𝐴−1𝐴 = 𝐼𝑛, where Im and Im are the identity matrices.  For the cases that 

the square matrices 𝐴𝑇𝐴  and 𝐴𝐴𝑇 are invertible there does exist a left inverse 𝐴𝑙𝑒𝑓𝑡
−1 =

(𝐴𝑇𝐴)−1𝐴𝑇 for matrices with 𝑚 > 𝑛 and a right inverse 𝐴𝑟𝑖𝑔ℎ𝑡
−1 = 𝐴𝑇(𝐴𝐴𝑇)−1 for 

matrices with 𝑚 < 𝑛.  Because these are limited to cases where the matrix is not rank 

deficient, the Moore-Penrose pseudoinverse, 𝐴†, was developed, which always exists, 



15 

coincides with left, right and general inverses when they exist, and has the following 

properties (Penrose, 1955):

• 𝐴𝐴†𝐴 = 𝐴 

• 𝐴†𝐴𝐴† = 𝐴† 

• (𝐴𝐴†)∗ = 𝐴𝐴† 

• (𝐴†𝐴)∗ = 𝐴†𝐴 

 

 (2.2)

 

This is particularly useful for cases where the same algorithm needs to be applied 

regardless of the dimensions of a given matrix.  Another method of matrix inversion 

involves using the matrix right divide, mrdivide, command in Matlab, which solves the 

matrix equation 𝐴 = 𝑋𝐵 for 𝑋 with as few non-zero elements as possible (Leon, 2005).  

2.3 Summary 

There has been very limited research in the field of indirect photography, and this 

research has occurred only recently.  Additionally, while the work performed here does 

build upon previous advancements in understanding Helmholtz reciprocity, dual 

photography, indirect photography, and linear algebra, it nonetheless differs substantially 

from past efforts in these fields.      
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3. Methodology 

3.1 Chapter Overview 

 This experiment was conducted in simulation using Matlab.  This research was 

modeled after the experimental trial using fixed camera FOV on surface 1 as discussed in 

Chapter 2. (Ferrel, Schafer, & Powell, 2011).  This involved creating a simulation with 

surfaces 1/3 and 2 in a specific configuration, and testing the effects on the returned 

indirect image which resulted from varying the number, location and layout of laser spots 

on surface 1. 

3.2 Theory 

The radiometric equation for radiance, from which all other radiometric quantities 

can be derived, is given by the spectral flux radiated per projected unit area of the source 

per detector solid angle, or 

𝐿𝑒 = 𝜕2𝜙𝑒
𝜕𝐴𝑠𝑐𝑜𝑠𝜃𝑠𝜕𝛺𝑑

(W cm−2sr−1)                                        (3.1) 

where 𝜕𝜙𝑒 is the differential flux, 𝜕𝐴𝑠𝑐𝑜𝑠𝜃𝑠 is the differential projected area of the 

source, and 𝜕𝛺𝑑 the differential solid angle subtended by the detector.  Rearranging terms 

in this equation and performing various operations give the other radiometric quantities, 

including flux, intensity, exitance, and irradiance (Dereniak & Boreman, 1996). 

Given this, if the initial irradiance is known, so long as the geometry terms and 

BRDFs are understood, the reflected radiance and subsequent irradiance onto other 

surfaces may both be found after arbitrarily many reflections.  Indirect photography 
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involves three occasions in which surfaces are impacted by light.  The setup studied here 

is shown in Figure 9.   

 

 

Figure 9.  The spatial coordinate system with respect to the three reflecting surfaces. 

 

The coordinates (x1,y1)  correspond to the positions of the initial laser spots on surface 1.  

Coordinates (x2,y2,z2)  refer to a grid of locations on the hidden object found on surface 2, 

while (x3,y3) describe the grid of locations on the surface 3 (which in this case is the same 

as surface 1) within the camera’s field of view.  In all cases, the Cartesian origin was 

chosen to be the lower left corner of surface 1.   

The proportion of flux which reaches surface 2 from surface 1 depends on the 

BRDF of surface 1 with respect to surface 2 (Driggers, Cox, & Edwards, 1999) and is 

proportional to  
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�cos 𝜃𝑑12 cos 𝜃𝑠12
𝑅12

2 � ⊙ [𝐵𝑅𝐷𝐹12(𝜃𝑖1, 𝜃𝑠12, ∆∅12)]                         (3.2) 

where  𝜃𝑑12is the zenith angle between a point on surface 1 (S1) and a point on surface 2 

(S2) with respect to the normal of S2.  𝜃𝑠12is the zenith angle between a point on surface 

1 (S1) and a point on surface 2 (S2) with respect to the normal of S1.  𝑅12 is the distance 

between these two points.  [𝐵𝑅𝐷𝐹12(𝜃𝑖1, 𝜃𝑠12, ∆∅12)] is the matrix of BRDFs of points 

on S1 to points on S2, which depends on the incident angle 𝜃𝑖1, the zenith angle between 

the source and a point on S1 with respect to the normal of S1, 𝜃𝑠12and ∆∅12, the 

azimuthal angle between the projection of the source ray onto S1 and the projection onto 

S1 of the ray between points on S1 and S2.   ⊙ is the Hadamard product, commonly 

known as point-wise matrix multiplication (Hogban, Brualdi, Greenbaum, & 

Matthias, 2003). 

Similarly, the proportion of flux which reaches surface 3 and then the camera 

from surface 2 is given by  

 
�
cos 𝜃𝑑23 cos 𝜃𝑠23

𝑅23
2 � ⊙ [𝐵𝑅𝐷𝐹23𝑐𝑎𝑚(𝜃𝑑23, 𝜃𝑠3𝑐𝑎𝑚, ∆∅3𝑐𝑎𝑚)]

⊙ [𝐵𝑅𝐷𝐹123(𝜃𝑑12, 𝜃𝑠23, ∆∅23)] 
(3.3) 

 
with similar notation as Equation (3.2).  Here, the subscripts on BRDF indicate position 

on the surface that is the source of the irradiance, the reflecting surface being considered, 

and position on surface collecting the reflected radiance, respectively.  It should be noted 

that in both these equations, cos 𝜃𝑑23, cos 𝜃𝑠23 and 𝑅23 are dependent upon the exact 

location of the resolution element on surface 2 and camera FOV pixel on the surface 3, 
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and thus take different values for every camera pixel and every resolution element of the 

hidden object.  Similarly, cos 𝜃𝑑12, cos 𝜃𝑠12 and 𝑅12 take unique values for every laser 

spot position and every resolution element of the hidden object. 

This allows this total series of laser spot movement for the system of experiments 

shown in Figure 9 to be represented by the following matrix system:  

 [Ф𝑐𝑎𝑚] = Ф𝑙𝑎𝑠𝑒𝑟𝐴𝑠2𝐴𝑙𝑒𝑛𝑠𝛺𝐹𝑂𝑉 

�[𝐵𝑅𝐷𝐹23𝑐𝑎𝑚] ⊙ [𝐵𝑅𝐷𝐹123] ⊙ [𝑐𝑜𝑠𝜃𝑑23] ⊙ [cos 𝜃𝑠23] ⊙ �
1

𝑅23
2 ��

∗ ��
1

𝑅12
2 � ⊙ [𝐵𝑅𝐷𝐹12] ⊙ [cos 𝜃𝑑12] ⊙ [𝑐𝑜𝑠𝜃𝑠12]� 

 

 

(3.4) 

 

 

where [Ф𝑐𝑎𝑚] is a matrix the flux measured by the camera for any pixel at S3 for any 

laser spot position on S1, Ф𝑙𝑎𝑠𝑒𝑟 is the laser flux, 𝐴𝑠2 is the resolution area defined on S2, 

𝐴𝑙𝑒𝑛𝑠 is the area of the camera lens,  𝛺𝐹𝑂𝑉 is the solid angle FOV of each camera pixel, 

and ∗ denotes the Kroenecker product, which is a general matrix multiplication (Hogban, 

Brualdi, Greenbaum, & Matthias, 2003).  Ф𝑙𝑎𝑠𝑒𝑟, 𝐴𝑠2, 𝐴𝑙𝑒𝑛𝑠, and 𝛺𝐹𝑂𝑉 are considered 

constants in these experiments.  Since the absolute magnitude of [Ф𝑐𝑎𝑚] is unimportant, 

these four can be considered to just scale [Ф𝑐𝑎𝑚] and therefore removed from the 

equation. 

In order to further simplify Equation (3.4), the assumption is made that the 

surfaces 1 and 3, upon which the laser light will be incident, are approximately 

Lambertian and therefore perfectly diffuse.  While this is not exactly the case, this 

approximation will allow 𝐵𝑅𝐷𝐹23𝑐𝑎𝑚 and  𝐵𝑅𝐷𝐹12 to be approximated as constants.  
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Additionally 𝐵𝑅𝐷𝐹123is a three dimensional matrix because it accounts for the laser spot 

positions on S1, the resolution elements on S2, and the individual pixel locations of the 

camera’s FOV on S3.  Since solution of Equation (3.4) only allows for a two dimensional 

matrix 𝐵𝑅𝐷𝐹123, the assumption must be made that the BRDF at any position on S1 for 

any reflectance angle to S3 is the same regardless of the incident angle from S1.  This is a 

good assumption for a Lambertian surface.  Because of this, the only non-constant terms 

remaining in this matrix equation are those geometry terms which depend on the 

separations and angles between various points, as well as BRDF123, which represents the 

object.  Therefore, Equation (3.4) simplifies to  

 [Ф𝑐𝑎𝑚] ∝ {[𝐵𝑅𝐷𝐹123] ⊙ [𝐺23]} ∗ [𝐺12] (3.5)  

 
where [𝐺23] represents the geometric terms between the resolution points on surface 2 

and the pixels of the camera FOV on surface 3, and is given by  

 [𝐺23] = [𝑐𝑜𝑠𝜃𝑑23] ⊙ [cos 𝜃𝑠23] ⊙ � 1
𝑅23

2 �  (3.6) 

with all matrices of dimension pxr where p is the number of camera pixels and r the 

number of resolution elements.  Similarly, [𝐺12] represents the geometric relationship 

between the laser spots on surface 1 and the resolution points on surface 2, and is given 

by  

 [𝐺12] = [𝑐𝑜𝑠𝜃𝑑12] ⊙ [cos 𝜃𝑠12] ⊙ � 1
𝑅12

2 �.  (3.7) 
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with all matrices of dimension rxl where r is again the number of resolution elements and 

l corresponds to the number of laser spots used.  These dimensions cause the recorded 

flux matrix [Ф𝑐𝑎𝑚] to have dimensions pxl, which matches the method shown in Figure 3 

for creating this matrix.  While some of these geometric terms are generally unknown, in 

this particular experiment it is possible to measure them as a result of knowing locations 

of all points of interest.  As a result, the BRDF of the unseen object can theoretically be 

determined using matrix manipulation.  This requires first that an inverse be found for 

[𝐺12], so that [Ф𝑐𝑎𝑚] can be multiplied by it to give 

 [Ф𝑐𝑎𝑚] ∗ [𝐺12]−1 ∝ [𝐵𝑅𝐷𝐹123] ⊙ [𝐺23] (3.8) 

Following this, [𝐺23] is easily accounted for by simply taking the entry-wise reciprocal 

and multiplying both sides by that matrix.  Since this step does not introduce additional 

uncertainty, the majority of the mathematical research done in this case centers on the 

inversion of [𝐺12]. 

3.3 Simulated Setup 

The simulation was modeled after the setup used by Ferrel, Schafer and Powell 

described in Chapter 2 and with schamtic shown in Figure 9 (Ferrel, Schafer, & Powell, 

2011).  In this case, the angle between surface 1/3 and surface 2 is 45 degrees, with 

surface 1/3 having a total length of 15.5” and a width of 11.5”.  The hidden object was 

placed on surface 2, with the rear-most portion of the image 5.87” from the position 

where surface 2 intersects surface 1.  The camera FOV remained in the same position 

regardless of location of the laser spot.  Though the camera itself had a rectangular FOV, 
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due to the angle of surface 1/3, the FOV measured 4” in both the x-direction (up the 

board) and the y-direction (across the board), with the lower-left corner of the FOV 

located at coordinates corresponding to 3.25” in the x-direction and 2.75” in the y-

direction.  

In an effort to determine the resolving power of indirect photography techniques 

for this setup, the hidden objects which were used were the same four black and white 

checkerboards of increasing spatial frequency shown in Figure 6.  Each of these 

checkerboards was of size 2”x2”, with the rear-most portion of the checkerboard 5.87” 

directly above S1 and the front of the checkerboard 9.87” above S1.  The Matlab code 

used to model these positions, as well as the position of the laser spots, can be found in 

Appendix A. 

Because these trials were accomplished in simulation, rather than being able to 

simply photograph the resulting intensity on surface 3, the matrix equation found in 

Equation (3.5) was used to determine the intensity that would be photographed by a 

camera in the ideal case.  This implies that there are no aberrations or any other factors 

which disturb the transport of light except for the non-specular reflection at the three 

surfaces.  While this is not entirely realistic, it is useful in evaluating the fundamental 

capabilities and limitations of matrix-based formulations of indirect photography. 

The quality of the resulting indirect images is quantified by the modified 

Modulation Transfer Function (MTF) introduced by LtCol Hoelscher as: 

𝑀𝑇𝐹 = 𝑊ℎ𝑖𝑡𝑒−𝐵𝑙𝑎𝑐𝑘
𝑊ℎ𝑖𝑡𝑒+𝐵𝑙𝑎𝑐𝑘

                                       (3.9) 



23 

 

where White is the average reflectance of all pixels in a recovered indirect image which 

correspond to the white pixels of the object and Black is the average reflectance of all 

pixels in a recovered indirect image which correspond to the black pixels of the object 

(Hoelscher, 2011).  An MTF of -1.0 would be the exact opposite image of the object, an 

MTF of 0.0 would show no resolution of the objects spatial features and an MTF of 1.0 

would be a perfect image of the object.  MTF values less than -1.0 or greater than 1.0 can 

only occur mathematically in the case that some pixels take negative reflectance values, 

which is not physical. 

This evaluation via MTF occurred for four different variables modified in Matlab 

code.  These were (1) changing how the pseudoinverse of a matrix is calculated,  (2) 

changing the number of laser spots on surface 1, (3) changing the distance that the laser 

spots are from the camera field of view on surface 1/3 and (4) changing how the laser 

spots are arranged at that distance.  An example of two different laser spot layouts is 

shown in Figure 10.   

 

        

Figure 10.  Different laser spot layouts. 



24 

 

Additionally some analysis was made of the effect of small errors in the data 

recorded by the camera, by purposely introducing a random normal percent error with 

varying standard deviation to the correctly derived intensity.  All of these variables were 

not changed simultaneously in an effort to determine an overall best-case scenario as the 

currently available computing power made it infeasible to consider every possible 

permutation of these.  Instead, each is considered individually in the hopes of unearthing 

general trends. 

 While a variety of different Matlab code was used in changing these different 

variables, one representative example is included in Appendix A.   

3.4 Chapter Summary 

The experiment described in Chapter 2 and the simulated portion of this research 

both use the same geometry, setup and equations, have different purposes.  The 

experiment was designed to both test the real-world application of matrix-based 

techniques of indirect photography and expose any fundamental issues with the design of 

the experiment.  Its immediate limitation, described in Chapter 2, prompted this research 

to be conducted via simulation, which allows for more trials as well as serves to remove 

extraneous variables which might make it more difficult to gain an understanding of the 

fundamental concepts involved in using matrices to perform indirect photography.  
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4. Analysis and Results 

4.1 Chapter Overview 

In simulation, a matrix-based technique for indirect imaging was shown to recover 

recognizable images.  The quality of these images varied greatly depending on the 

desired resolution and the various controllable aspects of the setup, such as method of 

matrix inversion, and number of laser spots and the location/layout of laser spots on 

surface 1.  General trends were found as to which setups would be the most effective, and 

multiple efforts were made to find an indicator, such as condition number or eigenvalue 

of the [𝐺12] matrix, which would show which setup is most effective without requiring 

multiple simulation runs.  All possible attempts at this showed no correlation to the 

effectiveness in resolving the image.  Nonetheless, these general trends give some insight 

as to methods of improving images acquired via indirect photography.    

4.2 Results of Simulation Scenarios 

A number of variables, all of which are under user control, were considered in 

trying to maximize the modified MTF, as defined by Equation (3.9), of the acquired 

image.  These included the method of matrix inversion, as well as the number and 

positions of the laser spots on surface 1.  Additionally, simulation was performed to 

determine the effect of small errors in flux as measured by the camera.  Because of 

computing power, these variables could not be considered jointly, but each is considered 

individually and yields usable information and a general trend.   
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4.2.1 Testing Method of Matrix Inversion 

There are two different ways to solve the matrix equation 𝐴 = 𝑋𝐵 when 𝐵 is a 

non-square matrix.  This does not include using the right inverse 𝐵𝑟𝑖𝑔ℎ𝑡
−1 = 𝐵𝑇(𝐵𝐵𝑇)−1. 

Since the Moore-Penrose pseudoinverse is equal to the right matrix inverse when the 

right inverse exists, testing using the Moore-Penrose pseudoinverse makes testing 

indirect image quality using the right matrix inverse unnecessary.  Using the Moore-

Penrose pseudoinverse minimizes the Euclidean norm for 𝐴 − 𝑋𝐵, whereas using the 

mrdivide Matlab command solves with as sparse a matrix as possible.  The more 

effective method is not initially obvious, especially when only considering the modified 

MTF, where 1.0 is ideal.  Table 1 compares the modified MTF accomplished by each of 

these methods for resolution of a 2x2 checkerboard with 64 resolution elements using an 

increasing number of laser spots. 

 

Table 1.  Modified MTF of 2x2 checkerboard with 64 resolution elements by method 
 

# of laser spots Moore-Penrose mrdivide 

80 0.9714 0.9208 

400 0.9772 0.9822 

4000 0.9578 0.9705 

 
 
 
By this comparison, the two methods seem to be similarly effective.  However, in 

viewing the images returned by each of these methods, shown in Figure 14, it is obvious 

that the mrdivide images do not correspond to the MTF values assigned to them.   
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Using 80 laser spots 
 Moore-Penrose (MTF=0.9604) mrdivide (MTF=0.9208) 

  

Using 400 laser spots 
 Moore-Penrose (MTF=0.9569) mrdivide (MTF=0.9822) 

  
 

Using 4000 laser spots 
 Moore-Penrose (MTF=0.9438) mrdivide (MTF=0.9705) 

  

Figure 11.   Comparison of indirect images returned for 2x2 checkerboard objects via 
Moore-Penrose pseudoinverse and mrdivide. 
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This disparity between image quality and assigned MTF value is a result of 

mrdivide returning negative reflectance values, which are non-physical (Meyer-Spradow 

& Loviscach, 2003).  The Moore-Penrose pseudoinverse does not yield negative values 

as solution to this matrix system and is the preferred method for accurately resolving the 

image, regardless of the spatial frequency of the object or desired resolution of the 

resulting indirect image.  For this reason, all remaining tests are done with matrix 

inversion accomplished via the Moore-Penrose pseudoinverse. 

4.2.2 Testing Differing Number of Laser Spots 

One of the other variables which can be adjusted from the position of the operator 

at the collocated camera and laser is the number of laser spots used for illumination, 

which corresponds to the number of experiments performed in order to obtain an indirect 

image.  Because each laser spot used increases the number of trials and therefore the 

dimensions of several matrices involved in the calculation, it is advisable to use as few 

laser spots as possible to resolve a clear image.  The ideal number of laser spots depends 

both on the spatial frequency of the object, as well as the desired resolution, as can be 

seen in Figures 12-14, where all trials were performed with the laser spots equally spaced 

in a 6”x6” square pattern centered on the point on S1 directly beneath the center of the 

hidden object.  The 16x16 objects are not included since they cannot be recognizably 

resolved regardless of laser spot setup.  In viewing these images, it must be noted that 

these results are specific to the geometry used in these simulated trials and that the ideal 

number of laser spots will likely vary with the setup.   
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 (a) (b) 
 

  
 (c) (d) 
 

  
 (e) (f) 
 
Figure 12.   Modified MTF as a function of number of laser spots for 2x2 objects at different 
resolutions: (a) 4x4, (b) 8x8, (c) 16x16, (d) 24x24, (e) 32x32 and (f) 64x64. 
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 (a) (b) 
 

  
 (c) (d) 
 

  
 (e) (f) 
 
Figure 13.   Modified MTF as a function of number of laser spots for 4x4 objects at different 
resolutions: (a) 4x4, (b) 8x8, (c) 16x16, (d) 24x24, (e) 32x32 and (f) 64x64. 
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 (a) (b) 
 
Figure 14.   Modified MTF as a function of number of laser spots for 8x8 objects at different 
resolutions. 
 
 
 

Generally, however, it may be noted that modified MTF increases with the 

number of laser spots before leveling off, and that a higher desired resolution will require 

the use of more laser spots in order to achieve a similar quality of indirect image.  It may 

also be noted that, for each spatial frequency checkerboard, the value of the modified 

MTF tends to level off, regardless of the desired resolution.  This may be indicative of the 

laser spots being so near one another as to no longer give substantially different angles of 

illumination on the object and information. 

Because this portion of the experiment was conducted entirely in simulation, the 

only cause of recovered images differing from the actual object is the data lost due to the 

necessary inversion of a geometrical matrix to solve for the indirect image of the object.  

Since this matrix’s dimensions and values change as the number and layout of the laser 

spots change, ideally some characteristic of this matrix should change in relation to the 
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MTF of the recovered images, enabling this characteristic to serve as an indicator to 

select the best setup of laser spots. 

The condition number of a matrix is defined as the ratio of the maximum and 

minimum eigenvalues of a matrix (Erceg, Soma, Baum, & Paulraj, 2002) and is equal to 

the norm of a matrix multiplied by the norm of the matrix inverse, or pseudoinverse in 

this case.  Though condition number of this matrix, which is independent of the object, 

was tested as a possible indicator of ideal setup, there was no discernible pattern to the 

condition number, as shown in Figure 15.   Condition number also serves as a measure of 

sensitivity of the solution, or how error in output (in this case, the image of the object) 

increases as a function of error in input (in this case, the data measured by the camera).  

Inversion by a matrix with a condition number of 1 does not increase the error, whereas a 

matrix with a larger condition number will require more initial accuracy.  A large 

condition number also indicates that the matrix is less invertible.  Given the very large 

condition numbers seen in Figure 15, particularly at higher resolutions, this is a serious 

concern and is addressed in section 4.3.5. 

 Another possible indicator would be to consider only the smallest eigenvalue of 

[𝐺12][𝐺12]′, which is a square matrix regardless of the dimension of [𝐺12].  Matrices are 

non-invertible if and only if they have a zero eigenvalue (Johnson, 1970).  Considering 

this, a near zero eigenvalue might indicate that the matrix is near singular.  As can be 

seen in Figure 16, this also fails to correspond to changes in modified MTF.  
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 (a) (b) 
 

  
 (c) (d) 
 
Figure 15.   Condition number as a function of number of laser spots for (a) 2x2, (b) 4x4,  
 (c) 8x8 and (d) 16x16 resolutions. 

 
 
 
Neither the condition number nor the minimum eigenvalue of this matrix 

correspond to the changes in modified MTF.  While there may be some other value 

derived from this matrix to indicate the ideal number of laser spots, it has not been found.  

As a result determining the ideal number of laser spots for a specific geometry requires 

an exhaustive simulation prior to beginning the physical setup.     
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 (a) (b) 
 

  
 (c) (d) 
 
Figure 16.   Minimum eigenvalue as a function of number of laser spots for (a) 2x2, (b) 4x4, 

(c) 8x8 and (d) 16x16 resolution. 
 

 
 
4.2.3 Testing Laser Spots at Differing Distances from Object  

Another factor which can be varied is the dimensions of the square pattern of laser 

spots centered at a point on S1 directly beneath the hidden object, hereafter denoted as C.   

The ideal location is not with the sides of this square as close to C as possible.  As these 

laser spots move further from C, it initially causes successive laser spot location to result 
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in a greater change in geometry between the laser spot location and object location, 

thereby contributing values to the [𝐺12] matrix which makes it less singular.  Simulation 

was used to determine at which perpendicular distances from this center point C the 

modified MTF was maximized, with examples shown in Figures 17 and 18.   

 

 
 

Figure 17.  Modified MTF as a function of laser spot distance from C for an 8x8 object at 
8x8 resolution with 100 laser spots. 
 
 
 

One possible reason for the general trend shown in Figure 17 again involves the 

invertibility of the matrix involved in these calculations.  When the same number of laser 

spots is put into a smaller perimeter as occurs when the dimensions of a rectangle are 

decreased, they become closer to one another.  Since each column of this matrix 

represents the geometric relationship of a single laser spot on surface 1 to all points on 

surface 2, the matrix can become nearly singular if the laser spots are not separated by an 

appropriate distance.  
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 1” away – 0.1365 3” away – 0.1715 

  

 5” away – 0.4731 7.5” away – 0.5998 

   

 9” away – 0.3671 11” away – 0.5333 

  

Figure 18.  Recovered images for 8x8 object at 8x8 resolution with 100 laser spots at varying 
distances from C. 
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This is of particular interest when considering the horizontal lines of laser spots 

across surface 1.  A cross-sectional view of the experimental setup is shown in Figure 19, 

which allows for the calculation of the basic relationship between these lines of laser 

spots and the various x-direction lines of the hidden object. 

 

 

 
Figure 19.  Cross-section of setup used in experimental and simulated trials. 

 
 
 
The law of sines gives  

sin (𝛼)
d

= sin (𝛽)
15.5−(Cy+Δy)

                                      (4.3.3.1) 
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where Cy is the y-coordinate of the point C, here 4.375”, and d and Δy are as shown in 

Figure 19.  Given that 𝛽 = 135ᵒ − 𝛼, α can be defined in terms of Cy, Δy and d with 

𝛼 = arccot �√2 15.5−(𝐶𝑦+Δy)

𝑑
− 1�.                             (4.3.3.2) 

The angle from the lower horizontal line of spots is given by the same expression except 

with 𝐶𝑦 + Δy  replaced by 𝐶𝑦 − Δy.   

From Figure 17, the max modified MTF with a rectangular layout for an 8x8 

object with 8x8 desired resolution occurs when the laser spots are 7.5” from C.  By using 

Equation (4.3.3.2) to solve for α, it is possible to solve for simplified versions of  𝜃𝑠12, 

𝜃𝑑12and 𝑅12 for the flattened cross-section, denoted as 𝛩𝑠12, 𝛩𝑑12 and 𝑟12.  Letting 

𝛫 = cos 𝛩𝑠12 cos 𝛩𝑑12 𝑟12
2⁄ , the geometric term in this flattened cross-section, allows 

for comparison of this quantity between different laser spot positions, as seen in 

Tables 2, 3 and 4.   

   

Table 2.  𝜥 between horizontal lines of laserspots and rows of hidden object with laser 
spots in square pattern with edges 7.5” from C. 

 Row of Hidden Object 
(Row 1 is rear-most row, Row 8 is front-most) Ratio  1 2 3 4 5 6 7 8 

𝛫 for lower 
line of spots 0.0011 0.0013 0.0015 0.0017 0.0019 0.0021 0.0024 0.0026 2.262 

𝛫 for upper 
line of spots 0.0301 0.0227 0.0173 0.0134 0.0105 0.0084 0.0068 0.0055 5.474 

Ratio 26.29 17.21 11.51 7.87 5.50 3.93 2.86 2.12  
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Table 3.  𝜥 between horizontal lines of laserspots and rows of hidden object with laser 
spots in square pattern with edges 1” from C. 

 Row of Hidden Object 
(Row 1 is rear-most row, Row 8 is front-most) Ratio  1 2 3 4 5 6 7 8 

𝛫 for lower 
line of spots 0.0059 0.0067 0.0075 0.0084 0.0091 0.0097 0.0101 0.0104 1.787 

𝛫 for upper 
line of spots 0.0113 0.0126 0.0137 0.0146 0.0151 0.0153 0.0152 0.0148 1.354 

Ratio 1.93 1.88 1.82 1.75 1.67 1.58 1.50 1.41  
 
 
 
Table 4.  𝜥 between horizontal lines of laserspots and rows of hidden object with laser 
spots in square pattern with edges 11” from C. 

 Row of Hidden Object 
(Row 1 is rear-most row, Row 8 is front-most) Ratio  1 2 3 4 5 6 7 8 

𝛫 for lower 
line of spots 0.0006 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012 0.0013 2.240 

𝛫 for upper 
line of spots 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 3.968 

Ratio 2.08 3.02 4.29 5.95 8.10 10.83 14.25 18.48  
 
 
 

As can be seen from the ratios in the far right column, which relate the largest and 

smallest values of Κ for a given line of laser spots, the variation in flux returned from 

different rows of the object is greatest when the line of laser spots is located 7.5” from the 

center point C.  Additionally, for this setup,  the lower and upper horizontal lines of laser 

spots also shows greater differences at 7.5” than the other distances considered.  These 

traits combine to give the matrix more variation, which makes it less singular and more 

invertible, resulting in improved image quality. 
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4.2.4 Testing Differing Layout of Laser Spots 

None of the previous examples were able to achieve a modified MTF of greater 

than 0.6 and had large areas in the middle of the image which were not well resolved.  

One of the controllable variables which makes the biggest difference in eventual image 

quality is the layout of the laser spots.  As an example, in Figure 18, the image acquired 

using lines of laser spots 5” from point C had a modified MTF value of 0.4731.  Merely 

by adding a slight stagger to the position of these spots, while keeping the number and 

general position the same, the MTF can be increased to 1.00, as shown in Figures 20 and 

21.  The red dots in Figure 20 (right) correspond to the experiment without stagger and to 

the red line in Figure 20 (left), while blue corresponds to the experiment with stagger. 

 

   

Figure 20.  (Left) Modified MTF as a function of distance from C for two different patterns 
of laser spots; (Right) Laser spot patterns used. 

 
 

 
Marked improvements such as this are accomplished in nearly every case by 

staggering the laser spots as shown in Figure 20.  The top of Figure 21 shows the contour 
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maps of [𝐺12], the matrix requiring inversion, for an 8x8 object with 8x8 resolution, with 

the resulting indirect images placed underneath.  The images on the left are accomplished 

without stagger and correspond to the red portions of Figure 20, while those on the right 

make use of staggered laser spot location and correspond to the blue portions of Figure 

20.  Similar to the image improving as the laser spots initially move away from the field 

of view on surface 1/3 it is possible this is a result of the matrix simply becoming less 

singular due to increased variation in the position of the laser spots.  This theory is 

supported by the top images in Figure 21, but further study is still needed on this matter. 

 

  

  

Figure 21.   (Top) Contour map of matrix [𝑮𝟏𝟐] and (bottom) resulting images.  Left is 
without stagger, right is with stagger of laser spot layout. 
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4.2.5 Effect of Small Error in Measurement 

By adjusting the placement, pattern and number of spots, it is theoretically 

possible to get a perfect copy of the object as an indirect image, as shown in simulation.  

It is important, however, to note that real-world conditions are not ideal, and there will 

likely be some systemic error in those cases.  The extremely large condition numbers of 

matrices to be inverted make this a particularly important case to consider.  Large 

condition numbers for the matrix 𝑋 means that when solving 𝐴𝑋 = 𝐵 for A, even small 

errors in B result in large errors in A (Zielke, 1983).    

To determine the effect that detection noise or other systematic uncertainties can 

have on a matrix approach to indirect photography, Figure 22 shows the modified MTF 

of the recovered indirect image at various resolutions, and Figures 23 and 24 show the 

recovered image, after a random normally distributed percent error with varying standard 

deviations has been individually introduced to each pixel in the photographed intensity.    

 

 

Figure 22.   Modified MTF of 2x2 objects at varying resolution (Blue - 2x2, Green - 4x4, Red 
8x8) with 120 staggered laser spots and lines 6" from C. 
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 (a) (b) 
 

    
 (c) (d) 
 

    
 (e) (f) 
 
Figure 23.   Recovered indirect images for 2x2 object at 4x4 resolution with intensity added 
percent error with standard deviation of (a) 10, (b) 1, (c) 0.1, (d) 1e-2, (e) 1e-3 and  
(f) No error. 
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 (a) (b) 
 

  
 (c) (d) 
 

  
 (e) (f) 
 
Figure 24.   Recovered indirect images for 2x2 object at 8x8 resolution with intensity added 
percent error with standard deviation of (a) 1, (b) 1e-2, (c) 1e-4, (d) 1e-6, (e) 1e-8 and  
(f) 1e-10. 
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 The recovered indirect images with 2x2 resolution are not included since these 

tended to be very accurate regardless of the error in camera measurement.  This is a result 

of the much lower condition numbers associated with the matrices used in resolving 

images at this resolution (see Figure 15).  From this, it is clear that a higher desired 

resolution will require less error in the measurements recorded by the camera in order to 

maintain a recognizable image.  Additionally, this issue can be somewhat diminished by 

minimizing the condition number of the matrix to be inverted.  This can be accomplished 

by varying the number, position and layout of the laser spots, and can be quickly 

performed in simulation before beginning with an experimental setup. 

4.3 Investigative Questions Answered 

The primary purpose of this work was to determine if it is possible to perform 

indirect photography by using matrices.  While this could not previously be verified 

experimentally due to flawed data, the simulated scenarios provide strong evidence that 

this can be mathematically accomplished.  The question of the best mathematical method 

for this case was also resolved, in favor of using the Moore-Penrose pseudoinverse for 

the required matrix inversion.  

Trends which determine the quality of the recovered image as a function of the 

number, location and pattern of the laser spots used to illuminate surface 1 were sought.  

While no indicator was found which corresponded to an ideal setup, it was discovered 

that a relatively small number of laser spots (less than 130) was required in most cases 

with this setup and that continuing to add more after approximately 120 never markedly 

improved the final result.  While this will likely vary according to the experimental setup, 
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this does indicate that increasing the number of laser spots does increase the recovered 

indirect image quality, but that this cannot be continued indefinitely.  Additionally, the 

question of what other methods could be used to improve the image was answered by 

showing the increase in MTF associated with moving the laser spots further from the 

field of view on surface 1/3 and by adding some variation to the pattern of the laser spots.  

These results are tempered by the very high level of accuracy required by the camera in 

order to produce recognizable images.    

4.4 Summary 

 By adjusting a combination of variables, it is possible to resolve 2x2 

checkerboards at nearly any resolution, 4x4 checkerboards at up to at least 32x32 

resolution, and 8x8 checkerboards at 8x8 resolution in the given setup.  As distances and 

angles between surfaces change, it is likely that these values will change.  However the 

general trends will remain and the overall ability to indirectly image otherwise hidden 

objects using a matrix formulation appears to be mathematically feasible, though it 

requires very accurate equipment. 
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5. Conclusions and Recommendations 

5.1 Chapter Overview 

This chapter contains the conclusions of this initial research into matrix-based 

indirect imaging techniques, as well as the significance of these results.  While this 

research was accomplished with specific geometry and hidden objects, these conclusions 

include several trends which hold for matrix-based indirect imaging techniques in 

general.  Also included is a brief overview of some of the research that has either been 

opened up by this work or remains to be done.  

5.2 Conclusions of Research 

This work has effectively demonstrated that an algorithm using the Moore-

Penrose pseudoinverse for matrix inversion can be used to recover information about a 

hidden object using an indirect photography technique.  Though this was accomplished 

with the assumption that the visible surface was Lambertian, this process will still work if 

this is not the case, so long as the BRDF of the surface is known.  Additional conclusions 

which can be drawn include that the most important factor in this case was the pattern 

used to determine the coordinates where the laser spots were on the visible reflecting 

surface.  Increasing the actual number of laser spots tended to cause a quick initial 

increase in resolved image quality, but it should be noted that continuing to add more did 

not have any positive influence after a certain point.  As a result, other methods, such as 

varying the layout of these spots, must be pursued to increase image quality.  This 

becomes particularly important when the data from the camera becomes noisy or 
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uncertain, since it is then very important to minimize the condition number of the matrix 

to be inverted.  It was also determined that while the modified MTF serves as an 

excellent indicator of this image quality, it is important to ensure that the values used in 

its calculation are physical, rather than an unphysical result of mathematical 

manipulation. 

5.3 Significance of Research 

While indirect photography has previously been introduced and demonstrated, 

this research provides an alternative method which can be pursued.  Using matrices and a 

setup in which the position of the laser spot is free to move independently from the 

camera FOV also increases the general practicality of indirect photography by reducing 

the physical restraints on where it can be applied.  A large unbroken, uniform surface for 

laser reflection and camera FOV is no longer required as was previously the case.  This 

initial work with the matrix formulation of the transport involved in indirect photography 

also opens the path for further research into the general form of the matrices associated 

with other experimental setups, eventually allowing for indirect photography to be used 

in situations which do not have a known geometry.  Indirect photography itself has a 

great deal of significance, particularly within the intelligence community and emergency 

services, as a means to identify and locate items of importance.    

5.4 Recommendations for Future Research 

There are several questions raised by this research, all of which are deserving of 

future research.  One important question which remained unanswered is what indicators, 
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if any, correspond to an idealized indirect photography setup.  While this must be a 

function of the matrix which is inverted, this research was unable to find any quantity 

which appropriately described the invertibility of this non-square matrix.  Finding such a 

value would greatly reduce the time needed for simulations and preparations once this 

process has reached a point where it can be applied for practical purposes. 

In a similar vein, before indirect photography can be effectively used, it is 

important that further research be done into the general form of the matrices involved in 

indirect photography.  There are several important facets to this. While matrices were 

considered for one particular setup in the course of this research, it will be essential to 

research how these matrices change as the geometry changes in order to create 

approximate matrices for use when the specific geometry is not known.  In conjunction 

with this, it will also be important to understand which parts of the geometry are most 

important to accurately model or approximate, and how error in those values affects the 

overall result.  Mathematical research should also be conducted into which factors can 

contribute to minimizing the condition number of the matrix resulting from the geometric 

relations between fixed points (resolution elements on S2) and user-defined locations 

(laser points on S1). 

Finally, it should be noted how much of a difference the layout and pattern of the 

laser spots on surface 1 can make.  In this paper, these were limited to rectangular 

patterns and rectangular patterns with small offsets.  As there are infinitely many 

different possible variations of patterns which can be used, it is recommended that a 

method be researched to determine the best possible pattern for these laser spots.  This 
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will require that it first be determined why some patterns are able to achieve more 

impressive results than others, and then expand this to maximize that effect. 

5.5 Recommendations for Action 

Research into indirect photography remains in its infancy, and both the theory and 

application need to be further developed before it can be put into practical use.  Another 

hindrance to currently applying these techniques is the current state of computing power.  

Until this increases, this can only be used for delayed information-gathering. At this time, 

the best course of action is for information regarding indirect photography to be 

disseminated to various academic institutions for further work and research, with a 

particular emphasis on physics, mathematics, and image processing.    

5.6 Summary 

Indirect photography is still in the early stages of development and much more 

research needs to be accomplished before it can be used in real world application.  

However, this document provides the basis for that research to be conducted using a 

matrix-based data reduction technique, beginning with a number of simplifying 

assumptions and slowly removing these until the technique of indirect photography 

becomes practical and useful. 
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Appendix A – Representative Example of Simulation Code 

This code is a representative example of the simulation code used to test the effect of 

varying different parameters.  In this case, the parameter which is varied is the number of 

laser spots.  The user inputs the spatial frequency of the checkerboard, the number of 

pixels for each dimension of the camera, the desired resolution and the range of number 

of laser spots to consider.  Additionally, within the code the offset from the center point C 

can be modified, as well as whether or not there is stagger.  The output of this code gives 

the object, a vector containing the number of laserspots, and corresponding vectors with 

the modified MTF as well as the condition number, and minimum eigenvalue of the 

matrix [𝐺12].  Other similar code is used to vary the distance of laser spots lines from 

point C, the method of inversion, and the amount of error in the camera measurement.  

Because of the similarity, copies of this code are not included here. 

  

function [Object LaserSpots MTF CNum MinEig]=InImSimB2(CheckSize, 
CamRow, CamCol, Resolution, MinSpots, MaxSpots) 
  
%% Define Object BRDF 
ObjectRows=CamRow*CamCol; 
ObjectCols=(Resolution)^2; 
Object(ObjectRows,ObjectCols)=0; 
Restart=Resolution^2/CheckSize; 
for i=1:ObjectCols 

if mod(floor(i/(Restart+.001)),2)==0;   %if column corresponds to  
odd 'row' of the object 
checks 

        if mod(floor(i/(Resolution/CheckSize+.001)),2)==1; 
            Object(:,i)=1; 
        end 
    else 
        if mod(floor((i)/(Resolution/CheckSize+.001)),2)==0; 
            Object(:,i)=1; 
        end 
    end 
end 
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ObjectAvg=mean(Object); 
ObjView(Resolution,Resolution)=0;  %Pre-allocate for speed 
  
for i=1:(Resolution) 
    for j=1:(Resolution) 
        ObjView(i,j)=ObjectAvg((i-1)*(Resolution)+j); 
    end 
end 
  
figure(1) 
colormap(bone) 
imagesc(ObjView) 
  
%% Define S2 positions 
L1y=15.5; 
x2min=3; 
x2max=7; 
x2step=(x2max-x2min)/(Resolution); 
CenterX=5; 
  
%d2 is measured from rear of surface2 
d2min=5.86764; 
d2max=9.86764; 
d2step=(d2max-d2min)/(Resolution); 
  
x2=((x2min+x2step/2):x2step:(x2max-x2step/2)); 
d2=(d2min+d2step/2):d2step:(d2max-d2step/2); 
  
z2=(d2)./sqrt(2); 
y2=L1y-z2; 
CenterY=L1y-7.86764*sqrt(2); 
  
%% Define S3 positions 
x3min=3.25; 
x3max=6.5; 
x3max=(x3max-x3min)+x3min; 
x3step=-(x3max-x3min)/(CamCol-1); 
  
y3top=6; 
y3bottom=2.75; 
y3bottom=y3top-(y3top-y3bottom); 
y3step=(y3top-y3bottom)/(CamRow-1); 
  
x3=x3max:x3step:x3min; 
y3=y3bottom:y3step:y3top; 
  
%% Create D23 matrix 
D23(length(x3)*length(y3),length(x2)*length(y2))=0; %Preallocate for  
 speed 
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for h=1:length(y2) 
    for i=1:length(x2) 
        for j=1:length(y3) 
            for k=1:length(x3) 
             D23(k+(j-1)*length(x3),i+(h-1)*length(x2))= 

(z2(h)*sqrt((1/2)*((y3(j)-y2(h))^2+z2(h)^2)))/ 
(((x3(k)-x2(i))^2+(y3(j)-y2(h))^2+z2(h)^2)^(2))            

            end 
        end 
    end 
end 
  
for b=1:MaxSpots-MinSpots+1; 
    LaserSpots(b)=b+MinSpots-1; 
     
x1min=CenterX-6; 
x1max=CenterX+6; 
x1step=(x1max-x1min)/(LaserSpots(b)-1); 
x1vector=x1min:x1step:x1max; 
  
y1min=CenterY-6; 
y1max=CenterY+6; 
y1step=(y1max-y1min)/(LaserSpots(b)-1); 
y1vector=y1max:-y1step:y1min; 
  
x1(4*LaserSpots)=0; 
y1(4*LaserSpots)=0; 
  
for i=1:LaserSpots(b) 
    if mod(i,3)==0 
        Offset=0; 
    elseif mod(i,3)==1 
        Offset=-1; 
    else 
        Offset=1; 
    end 
    x1(i)=x1vector(i); 
    x1(i+LaserSpots(b))=x1max+Offset; 
    x1(i+2*LaserSpots(b))=x1vector(LaserSpots(b)+1-i); 
    x1(i+3*LaserSpots(b))=x1min+Offset; 
    y1(i)=y1min+Offset; 
    y1(i+LaserSpots(b))=y1vector(LaserSpots(b)+1-i); 
    y1(i+2*LaserSpots(b))=y1max+Offset; 
    y1(i+3*LaserSpots(b))=y1vector(i); 
end 
  
figure(2) 
plot(x1,y1); 
length(x1); 
  
D12(length(x2)*length(y2),length(x1))=0;  %Preallocate for speed 
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for i=1:length(x1) 
    for j=1:length(y2) 
        for k=1:length(x2) 
            Radius(k+(j-1)*length(x2),i)= 

sqrt((x1(i)-x2(k))^2+(y1(i)-y2(j))^2+z2(j)^2); 
            CosS(k+(j-1)*length(x2),i)= 

z2(j)./Radius(k+(j-1)*length(x2),i); 
            CosD(k+(j-1)*length(x2),i)= 

sqrt(1/2)*(y1(i)-y2(j)+z2(j))./ 
Radius(k+(j-1)*length(x2),i); 

            D12(k+(j-1)*length(x2),i)= 
CosS(k+(j-1)*length(x2),i).* 
CosD(k+(j-1)*length(x2),i)./(Radius(k+(j-1)* 
length(x2),i).^2);       

            D12(k+(j-1)*length(x2),i)= 
(z2(j)*sqrt((1/2)*((y1(i)-y2(j))^2+z2(j)^2)))/ 
(((x1(i)-x2(k))^2+(y1(i)-y2(j))^2+z2(j)^2)^(2)); 

        end 
    end 
end 
  
%% Cleanup unneeded variables 
clear ObjView ObjectAvg 
clear Alpha Gamma1 Gamma2 GammaStepB GammaStepT GammaVB GammaVT 
clear LGV LGVB LPV Phi1 Phi2 PhiStep PhiV 
clear Sigma XOrigin YOrigin dm0 h i j k s v w L1y L2k d2min d2max  
clear d2step x2min x2max x2step x3step y3step 
clear x3 y3 CamCol CamRow 
  
%% Calculate Intensity 
Intensity=(Object.*D23)*D12; 
  
%% Reverse Calculate BRDF of Object 
BRDF=(pinv(D12')*Intensity')'./D23; 
  
for i=1:length(BRDF(1,:)) 
    BRDFAvg(i)=sum(BRDF(:,i))/length(BRDF(:,1)); 
end 
  
minBRDF=min(BRDFAvg); 
maxBRDF=max(BRDFAvg); 
  
BRDFAvg=(BRDFAvg-minBRDF)/(maxBRDF-minBRDF); 
  
for i=1:length(x2) 
    for j=1:length(d2) 
        BRDFMat(i,j)=BRDFAvg((i-1)*length(d2)+j); 
    end 
end 
  
%figure(3) 
%colormap(bone) 
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%imagesc(BRDFMat) 
  
DarkSum=0; 
for i=1:ObjectCols 
    if mod(floor(i/(Restart+.001)),2)==0;   %if column corresponds to  

odd 'row' of the object 
checks 

        if mod(floor(i/(Resolution/CheckSize+.001)),2)==1; 
            DarkSum=DarkSum+BRDFAvg(:,i); 
        end 
    else 
        if mod(floor((i)/(Resolution/CheckSize+.001)),2)==0; 
            DarkSum=DarkSum+BRDFAvg(:,i); 
        end 
    end 
end 
  
LightSum=sum(sum(BRDFMat))-DarkSum; 
MTF(b)=(DarkSum-LightSum)/(sum(sum(BRDFMat))); 
CNum(b)=norm(D12)*norm(pinv(D12)); 
MinEig(b)=eigs(D12*D12',1,'sm'); 
  
clear Intensity BRDF D12 Radius CosS CosD 
end 
  
figure(1) 
plot(LaserSpots*4,MTF) 
set(gca,'fontsize',12) 
xlabel('Number of laser spots','fontsize',15) 
ylabel('Modified MTF','fontsize',15) 
  
figure(2) 
plot(LaserSpots*4,CNum) 
set(gca,'fontsize',12) 
ylabel('Condition number of inverted matrix','fontsize',15) 
xlabel('Number of laser spots','fontsize',15) 
  
figure(3) 
plot(LaserSpots*4,MinEig) 
set(gca,'fontsize',12) 
ylabel('Minimum eigenvalue of B*B''','fontsize',15) 
xlabel('Number of laser spots','fontsize',15) 
  
end 
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